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Abstract

The generalized Riemann problem (GRP) method was proposed for compressible fluid flows based on the Lagrangian
formulation [M. Ben-Artzi, J. Falcovitz, A second-order Godunov-type scheme for compressible fluid dynamics, J. Com-
put. Phys., 55(1) (1984) 1–32], and a direct Eulerian version was developed in [M. Ben-Artzi, J. Li, G. Warnecke, A direct
Eulerian GRP scheme for compressible fluid flows, J. Comput. Phys., 28 (2006) 19–43] by using the concept of Riemann
invariants. The central feature of the GRP method is the resolution of centered rarefaction waves. In this note we show
how to use the concept of Riemann invariants in order to resolve the rarefaction waves in the Lagrangian coordinate sys-
tem and result in the GRP scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The generalized Riemann problem (GRP) method was originally developed for compressible fluid dynamics
[1], then had many applications, see [2–4] and references therein. The method was first formulated for the one
dimensional system of an unsteady and inviscid flow in the Lagrangian coordinate system
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where (x, t) are Lagrangian coordinates; s ¼ 1
q is the specific volume, and q, u, p are the density, velocity and

pressure, respectively. The internal energy e is given by a state equation p = p(s,e). The main feature of the
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GRP method is to resolve centered rarefaction waves analytically. In [1] the centered rarefaction waves are
resolved by tracing the primitives u and p.

In the context of compressible fluid flows or even hyperbolic conservation laws, the concept of Riemann
invariants plays a very useful role [7] and has an analogue in the diagonalization process of linear hyperbolic
systems. This concept was used in order to derive a direct Eulerian scheme [9,6], which avoids the passage from
the Lagrangian to the Eulerian framework. This concept can also be extended to a more general setting of
hyperbolic balance laws [5].

An important mathematical factor is the Riemann invariants associated with centered rarefaction waves
remain regular up to the singularity point of the waves. This is related to the fact that a Riemann invariant
is constant throughout the corresponding isentropic rarefaction wave. This regularity property of Riemann
invariants is in contrast to the fact that the derivatives of flow variables s, u and p are singular at the initial
discontinuity. Furthermore, it is very natural in the process of acoustic approximation, which leads to L1 or E1

scheme in [4], and G1 in [5] (the letters L, E and G are referred to the words ‘‘Lagrangian’’, ‘‘Eulerian’’ and
‘‘GRP’’, respectively).

In this note, we show how to use the Riemann invariants in order to resolve the centered rarefaction waves
occurring in the generalized Riemann problem. While the final result coincides with the original GRP treat-
ment [1], the method of derivation is straightforward and conforms to the application of Riemann invariants
in a variety of other systems [9,5,6].

In order to make this paper somewhat self-contained, we recall some basic facts about (1.1) in Section 2,
including the concept of Riemann invariants, characteristic coordinates and the machinery of the GRP
method. In Section 3, we explain the analogue of Riemann invariants in an acoustic approximation. As a cen-
tral ingredient, the resolution of centered rarefaction waves is obtained by directly using the Riemann invar-
iants in Section 4. Then we summarize the result about the time derivatives of solutions used in the GRP
method in Section 5 and present several examples in Section 6.
2. Riemann invariants, characteristic coordinates and the GRP method

In this section we recall the Riemann invariants and characteristic coordinates for (1.1) in order to resolve
the centered rarefaction waves occurring in the generalized Riemann problem, we keep the notations in [1] or
[5], which are listed at the end of this section for the reader’s easy reference. We rewrite (1.1), for smooth flows,
in the following form:
ots� oxu ¼ 0; otuþ oxp ¼ 0; otS ¼ 0; ð2:1Þ

where s is the specific volume, u the velocity, p the pressure and S the entropy related to the other variables
through the second law of thermodynamics
de ¼ T dS � pds ð2:2Þ

and T is the temperature. Regard p as a function of s and S, p = p(s,S). Then the local sound speed c is given
by c2 ¼ �s2 � opðs;SÞ

os . The system (1.1) or (2.1) possesses three eigenvalues,
k� ¼ �c=s; k0 ¼ 0; kþ ¼ c=s: ð2:3Þ

Let us introduce variables w and /
w ¼ u�
Z s cðw; SÞ

w
dw; / ¼ uþ

Z s cðw; SÞ
w

dw: ð2:4Þ
Then the Riemann invariants associated with k�, k0 and k+ are, respectively, see [7],
k� : ðw; SÞ; k0 : ðu; pÞ; kþ : ð/; SÞ: ð2:5Þ

We regard all thermodynamic variables p, T, e and c as functions of s and S. Then in terms of total differentials
we can write the Riemann invariants / and w (as functions of u, s, S) as,
dw ¼ du� c
s

dsþ ow
oS

dS ¼ duþ s
c

dp þ Kðs; SÞdS; ð2:6Þ
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where since ow
oS ¼ �

R s 1
w �

ocðw;SÞ
oS dw, we have
Kðs; SÞ ¼ � s
c

op
oS
�
Z s 1

w
� ocðw; SÞ

oS
dw: ð2:7Þ
Recall [4, (4.67)] that along the characteristic Cþ : x0ðtÞ ¼ c
s, we have duþ s

c dp ¼ 0, so that in this direction we
get
dw ¼ Kðs; SÞdS along Cþ: ð2:8Þ

Observe that this can be further simplified if we note that, by otS = 0, we have,
dS ¼ c
s

oS
ox

dt along Cþ: ð2:9Þ
Similarly, since o/
oS ¼

R s 1
w �

ocðw;SÞ
oS dw, we have
d/ ¼ �Kðs; SÞdS; dS ¼ � c
s

oS
ox

dt; along C� : x0ðtÞ ¼ � c
s
: ð2:10Þ
In particular, in the important case of polytropic gases, we have
p ¼ ðc� 1Þe=s; c2 ¼ cps; c > 1; ð2:11Þ

where e is a function of S alone. Then the Riemann invariants w, / are
w ¼ uþ 2c
c� 1

; / ¼ u� 2c
c� 1

: ð2:12Þ
In this case, by using (2.7) and (2.2) we obtain
Kðs; SÞ ¼ s
ðc� 1Þc

op
oS
¼ T

c
: ð2:13Þ
It follows that:
dw ¼ duþ cs
ðc� 1Þc dp þ c

ðc� 1Þs ds; d/ ¼ du� cs
ðc� 1Þc dp � c

ðc� 1Þs ds; ð2:14Þ

T dS ¼ c2

ðc� 1Þs dsþ s
ðc� 1Þ dp: ð2:15Þ
Now we establish characteristic coordinates (a,b). They are defined in terms of the integral curves of the fol-
lowing differential equations,
dx
dt
¼ c

s
;

dx
dt
¼ � c

s
: ð2:16Þ
To be more specific, b is the initial value of the slope �c/s at the singularity (x, t) = (0,0), and a for the trans-
versal characteristic curves is the x-coordinate of the intersection point with the leading b-curve. For poly-
tropic gases, they may be properly normalized, see (4.2) and (4.3) in Section 4. We illustrate this notation
of characteristic coordinates in Fig. 2.1.

Then all flow variables s, p, u, S, T can be viewed as functions of (a,b). In particular, the Lagrangian coor-
dinates (x, t) are regarded as functions of (a,b),
x ¼ xða; bÞ; t ¼ tða; bÞ; ð2:17Þ
which satisfy
ox
oa
¼ � c

s
ot
oa
;

ox
ob
¼ c

s
ot
ob
: ð2:18Þ
Differentiating the first equation in (2.18) with respect to b, the second with respect to a and subtracting, we
deduce that the function t = t(a,b) satisfies a second order equation,
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Fig. 2.1. A typical wave pattern for the generalized Riemann problem (1.1) and (2.23). (a) Wave pattern for the GRP. The initial data
U 0ðxÞ ¼ UL þ xU 0L for x < 0 and U 0ðxÞ ¼ UR þ xU 0R for x > 0. (b) Wave pattern for the associated Riemann problem.
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In terms of the characteristic coordinates (a,b), we write the characteristic equations for w and S as,
oS
ob
¼ ot

ob
� c
s
� Sx;

ow
ob
¼ ot

ob
� c
s

Kðs; SÞ � Sx; ð2:20Þ
where Sx := oS/ox is regarded as a function of (a,b). Denote
Aða; bÞ ¼ cða; bÞ
sða; bÞKðs; SÞ � Sxða; bÞ: ð2:21Þ
Then w, as function of (a,b), also satisfies a second order equation, after inserting (2.19),
o
2w

oaob
¼ o

2t
oaob

� Aþ ot
ob
� oA
oa
¼ s

2c
� ot
oa
� oð�c=sÞ

ob
� Aþ ot

ob
oA
oa
� s

2c
� oðc=sÞ

oa
� A

� �
: ð2:22Þ
This equation is very useful in the resolution of centered rarefaction waves.
Next we consider the generalized Riemann problem for (1.1) subject to the piecewise initial data
Uðx; 0Þ ¼
UL þ U 0Lx; x < 0;

UR þ U 0Rx; x > 0:

�
ð2:23Þ
The associated Riemann problem is the initial value problem for (1.1) with the piecewise constant value UL

and UR (zero slopes in (2.23)). Denote the associated Riemann solution as RA(x/t; UL,UR), which can be ob-
tained approximately or exactly, see [12]. The initial structure of the solution U(x, t) to (1.1) and (2.23) is deter-
mined by the associated Riemann solution, and is described asymptotically as [10,11],
lim
t!0

Uðkt; tÞ ¼ RAðk; U L;URÞ; k ¼ x=t: ð2:24Þ
The local wave configuration is usually piecewise smooth and consists of rarefaction waves, shocks and con-
tact discontinuities, as the schematic description in Fig. 2.1. The rarefaction wave as a part of the solution
RA(x/t; UL,UR), is referred to as the associated rarefaction wave.

As is well known, the Riemann invariants remain constant across the corresponding associated rarefaction
wave. For example, the functions w and S are invariant inside the associated rarefaction wave defined by the
eigenvalue k�, as shown in Fig. 2.1(b). When the non-uniform initial data (2.23) is considered, the GRP solu-
tion of (1.1) can be regarded as the perturbation of RA(x/t; UL,UR). Therefore, w and S still remain regular
inside the curved rarefaction wave (associated with k�) occurring the GRP solution. This fact motivates to use
the Riemann invariants in resolving the rarefaction waves.
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We are now in the position to explain the GRP method. As in [1,6], the GRP method consists of the fol-
lowing four steps.

Step 1. Given piecewise initial data
U nðxÞ ¼ Un
j þ rn

j ðx� xjÞ; x 2 ðxj�1=2; xjþ1=2Þ; ð2:25Þ

we solve the Riemann problem for (1.1) at each grid point (xj+1/2, tn) to define the Riemann solution
U n
jþ1=2 ¼ RA 0; U n

j þ
Dx
2

rn
j ;U

n
jþ1 �

Dx
2

rn
jþ1

� �
; ð2:26Þ
where rn
j and rn

jþ1 corresponds to U 0L and U 0R, respectively, in (2.23).
Step 2. Determine ðoU=otÞnjþ1=2 and calculate mid-point values U nþ1=2

jþ1=2 approximately,
U nþ1=2
jþ1=2 ¼ U n

jþ1=2 þ
Dt
2

� oU
ot

�n

jþ1=2
: ð2:27Þ
Step 3. Evaluate the new cell averages Unþ1
j using the updating formula,
U nþ1
j ¼ Un

j �
Dt
Dx

F Unþ1=2
jþ1=2

� �
� F Unþ1=2

j�1=2

� �� �
; ð2:28Þ
where F is the flux function in (1.1).
Step 4. Update the slope rnþ1

j by the following procedure. Define
Unþ1;�
jþ1=2 ¼ U n

jþ1=2 þ Dt
oU
ot

� �n

jþ1=2

;

rnþ1;�
j ¼ 1

Dx
ðDUÞnþ1;�

j :¼ 1

Dx
Unþ1;�

jþ1=2 � Unþ1;�
j�1=2

� �
:

ð2:29Þ
In order to suppress local oscillations near discontinuities, we apply to rnþ1;�
j a monotonicity algorithm-slope

limiters,
rnþ1
j ¼ minmod �

Unþ1
j � Unþ1

j�1

Dx
; rnþ1;�

j ; �
Unþ1

jþ1 � Unþ1
j

Dx

 !
; ð2:30Þ
where the parameter � 2 [0,2).
We can see that once the Godunov scheme for (1.1) is assumed, our GRP scheme is just to obtain the time

derivatives ðoU=otÞnjþ1=2 used in Step 2. This is the main task in the present paper. In Table 1, we list some
notations often used in the present paper.

3. Acoustic approximation

When UL = UR and U 0L 6¼ U 0R, only linear waves emanate from the origin and the acoustic case follows
(Fig. 3.1). Then the GRP scheme becomes simple and is stated in the following theorem.

Theorem 3.1 (Acoustic case). When U* = UL = UR and U 0L 6¼ U 0R, we have the acoustic case. (op/ot)*, (ou/ot)*

and (os/ot)* can be solved as
ou
ot

� �
�
¼ � 1

2
p0L þ

c�
s�

u0L þ p0R �
c�
s�

u0R

� �
;

op
ot

� �
�
¼ � 1

2

c�
s�

p0L þ
c�
s�

u0L � p0R þ
c�
s�

u0R

� �
;

os
ot

� �
�
¼ � s2

�
c2
�

op
ot

� �
�
:

ð3:1Þ
Proof. We rewrite the first two equations of (1.1) as
pt þ
c2

s2
ux ¼ 0; ut þ px ¼ 0: ð3:2Þ



Table 1
Basic notations

Symbols Definitions

s, u, p, S Specific volume, velocity, pressure, entropy
w, / Riemann invariants associated with �c/s and c/s, respectively
QL, QR limQ(x, 0) as x! 0�, x! 0+

Q0L; Q0R Constants slope oQ
ox for x < 0, x > 0

RA(Æ; QL,QR) Solution of the Riemann problem subject to data QL, QR

Q
*

RA(0; QL,QR)
Q1, Q2 The value of Q to the left, the right of contact discontinuity
Q�(x, t), Q+(x, t) The solution in the left, the right�

oQ
ot

�
�

oQ
ot ðx; tÞ at x ¼ 0 as t! 0þ

a,b Two characteristic coordinates defined by c/s and �c/s, respectively
rL, rR Shock speed at time zero, corresponding to � c

s ;
c
s

l2 ¼ c�1
cþ1 c > 1 the polytropic index, c = 1.4 for air

Fig. 3.1. The acoustic case: UL = UR, U0L 6¼ U0R.
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We linearize this system around the state U = U* and use the standard diagonalization process to get
uþ s�
c�

p
� �

t

þ c�
s�

uþ s�
c�

p
� �

x

¼ 0; u� s�
c�

p
� �

t

� c�
s�

u� s�
c�

p
� �

x

¼ 0: ð3:3Þ
Then we find that
ou
ot

� �
�
þ s�

c�

op
ot

� �
�
¼ � c�

s�
u0L � p0L;

ou
ot

� �
�
� s�

c�

op
ot

� �
�
¼ c�

s�
u0R � p0R; ð3:4Þ
which immediately gives (ou/ot)* and (op/ot)* in (3.1).
For the computation of (os/ot)*, we use the following identity, which is obtained from the equation of state

p = p(s,S) and the entropy equation oS
ot ¼ 0,
op
ot
¼ � c2

s2

os
ot
þ op

oS
ðs; SÞ � oS

ot
¼ � c2

s2

os
ot
: � ð3:5Þ
Remark 3.2. The quantities uþ s�
c�

p and u� s�
c�

p are the Riemann invariants in the acoustic case. This moti-
vates us to use Riemann invariants in the resolution of centered rarefaction waves.

Remark 3.3. In the implementation of the GRP method, we use the acoustic approximation when
jUL � URj � 1. In fact, most cases involve this approximation.
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4. The resolution of centered rarefaction waves

In this section we use the Riemann invariants as the main variables to resolve the centered rarefaction
waves occurring in the generalized Riemann problem (1.1) and (2.23), instead of tracing the singularity of flow
variables u, p and s.

Consider the rarefaction waves associated with � c
s and denote by U�(x, t) (resp. U1(x, t)) the states (regions

of smooth flows) ahead (resp. behind) the rarefaction wave, see Fig. 2.1(a) where U�(x, t) is determined by the
left initial data U L þ U 0Lx. Characteristic curves throughout the rarefaction wave are denoted by b(x, t) = b
and a(x, t) = a, b 2 [bL,b*], �1 6 a < 0, bL ¼ � cL

sL
, b� ¼ � c�

s�
. Here b and a are denoted as follows: b is the

initial value of the slope � c
s at the singularity (x, t) = (0,0), and a for the transversal characteristic curves is

the x-coordinate of the intersection point with the leading b-curve, which may be properly normalized, see
below for polytropic gases.

Since the initial structure of the solution to (1.1) and (2.23) is determined by the associated Riemann prob-
lem, the rarefaction wave in Fig. 2.1(a) is asymptotically the same as the associated rarefaction wave RA(x/
t; UL,UR) in Fig. 2.1(b) at the origin. The latter is expressed by using
x=t ¼ �c=s; w ¼ const ¼ wL; S ¼ SL: ð4:1Þ

The characteristic coordinates inside this associated centered rarefaction wave are, see [4], after a
normalization,
tassða; bÞ ¼ að�bÞ�1=2
; xassða; bÞ ¼ �að�bÞ1=2

: ð4:2Þ

Note that now a > 0. They are the leading terms, in terms of a, of the transform (2.17), as a! 0,
xða; bÞ ¼ xassða; bÞ þOða2Þ; tða; bÞ ¼ tassða; bÞ þOða2Þ: ð4:3Þ

The following lemma resolves the centered rarefaction wave shown in Fig. 2.1(a). This result is the same as in
[1].

Lemma 4.1. The limiting values ou
ot ð0; bÞ and op

ot ð0; bÞ satisfy the linear relation,
aL

ou
ot
ð0; bÞ þ bL

op
ot
ð0; bÞ ¼ dLðbÞ; ð4:4Þ
for all bL 6 b 6 b*, where
ðaL; bLÞ ¼ 1;
sð0; bÞ
cð0; bÞ

� �
ð4:5Þ
and dL = dL(b) depends on the initial data U L; U 0L and the Riemann solution RA(x/t; UL,UR). For polytropic

gases, dL is
dL ¼
1þ l2

1þ 2l2
h1=ð2l2Þ þ l2

1þ 2l2
hð1þl2Þ=l2

� �
T LS0L=sL � h1=ð2l2ÞcL=sLw0L; h ¼ cð0; bÞ=cL; ð4:6Þ
Note that the limiting values s(0,b), c(0,b) are obtained from the associated Riemann solution RA(x/t; UL,UR),

and T LS0L; w0L are given by the formula (2.15) and (2.14), respectively.

Proof. The equation for w in (2.6) and the equation for S in (2.1) yield
ou
ot
þ s

c
op
ot
¼ ow

ot
: ð4:7Þ
Denote wa(a,b) = (ow/oa)(0,b). Note that
wa ¼
ot
oa
� ow

ot
� c

s
ow
ox

� �
: ð4:8Þ
Taking into account (2.8) and (2.9), we have
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ow
ot
þ c

s
ow
ox
¼ c

s
Kðs; SÞSx; ð4:9Þ
so that for (4.8) we get
ow
ot
¼ 1

2
Aða; bÞ þ wa �

ot
oa

� ��1
" #

; ð4:10Þ
(see (2.21) for the notation A(a,b)). Hence Eq. (4.4) follows from (4.7) by setting a = 0 and evaluating wa(0,b)
and A(0,b).

(i) The computation of A(0,b). Note that the entropy function S is regular throughout the rarefaction wave.
Then we use the entropy equation oS

ot ¼ 0 to get
o

ot
Sx ¼

o

ox
oS
ot
¼ 0: ð4:11Þ
Denote �a ¼ xða;bÞ. Since a = a(x, t) is chosen to be the x-coordinate of the intersection point of the C+-
characteristic curve with the leading C�-characteristic curve, we have a P �a > 0. In view that the points
ð�a; bLÞ and (a,b) correspond to the same x-coordinate, we deduce from (4.11)
Sxða; bÞ ¼ Sxð�a; bLÞ: ð4:12Þ

It follows, by taking the limit a! 0, that:
Sxð0; bÞ ¼ Sxð0; bLÞ ¼ S0L: ð4:13Þ

Thus we conclude
Að0; bÞ ¼ cð0; bÞ
sð0; bÞKðsð0; bÞ; SLÞS0L: ð4:14Þ
Particularly, for the polytropic gases, we have, by using (2.13)
Að0; bÞ ¼ T ð0; bÞ
sð0; bÞ S0L: ð4:15Þ
We use (2.2) and (2.11) to get T=T L ¼ c2=c2
L. Finally we obtain
Að0; bÞ ¼ h2T LS0L=sð0; bÞ ¼ hð1þl2Þ=l2

T LS0L=sL; ð4:16Þ

where h = c(0,b)/cL and T LS0L is given by (2.15).

(ii) The computation of wa(0,b). Note that (ot/ob)(0,b) ” 0. We set a = 0 for (2.22) to obtain
o

ob
wað0; bÞ ¼

sð0; bÞ
2cð0; bÞ �

otass

oa
ð0; bÞ � Að0; bÞ: ð4:17Þ
The integration from bL to b gives
wað0; bÞ ¼ wað0; bLÞ þ
Z b

bL

sð0; nÞ
2cð0; nÞ �

otass

oa
ð0; nÞ � Að0; nÞdn: ð4:18Þ
The initial data wa(0,bL) is obtained from (4.8) by setting b = bL and noting that ow
ox ð0; bLÞ ¼ w0L,
wað0; bLÞ ¼
otass

oa
ð0; bLÞ Að0; bÞ � 2

c
s

ow
ox
ð0; bÞ

� �				
b¼bL

¼ cL

sL

� �1=2

ðKðsL; SLÞS0L � 2w0LÞ: ð4:19Þ
For the polytropic gases, we obtain
ow
oa
ð0; bÞ ¼ ow

oa
ð0; bLÞ � B

c
cL

� �ð1þ2l2Þ=2l2

� 1

" #
; ð4:20Þ
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where
B ¼ 1

1þ 2l2
� 1

ðsLcLÞ1=2
T LS0L: ð4:21Þ
Inserting (4.16) and (4.20) into (4.10) yields (4.6). h
5. Time derivatives of solutions at the singularity

In order to derive the GRP scheme, we not only need to resolve the rarefaction wave, as did in Section 4,
but the resolution of shocks also needs treating. For the latter, we can take the van Leer approach exactly, see
[8], or refer to the original GRP paper [1]. The results are listed in Appendix A. Thus we have the following
theorems.

Theorem 5.1 (Calculation of (op/ot)* and (ou/ot)*). The limiting values (op/ot)* and (ou/ot)* are obtained by
solving a pair of linear algebraic equations
aL
ou
ot

� �
�
þ bL

op
ot

� �
�
¼ dL;

aR
ou
ot

� �
�
þ bR

op
ot

� �
�
¼ dR;

ð5:1Þ
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Fig. 6.1. Numerical results for Sod’s problem: 100 grid points are used.
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where aL, aR, bL, bR, dL and dR depends on the initial data (2.23) and the Riemann solution RA(0; UL0,UR), and

they are summarized in Appendix A.

Use the state equation p = p(s,S) and the entropy equation oS
ot ¼ 0. We see
op
ot
¼ op

os
� os
ot
þ op

oS
� oS
ot
¼ � c2

s2
� os
ot
: ð5:2Þ
Noting that the specific volume s and the sound speed c experience jumps across the contact discontinuity
x = 0, (os/ot)* is double-valued.

Theorem 5.2 (Calculation of (os/ot)*). The limiting value os
ot


 �
� is calculated as follows:
os
ot

� �
�
¼ � s2

�
c2
�

op
ot

� �
�

ð5:3Þ
where s*, c* can take either s1*, c1* or s2*, c2*.
6. Numerical examples

Once the generalized Riemann problem at each grid point is resolved, we can implement the GRP scheme
following the steps in Section 2, see also [1,4,5]. In the choice of the parameter � in the minmod limiter, we use
� = 1.9. We choose the following three one-dimensional examples to illustrate the performance of the resulting
scheme. The solid lines represent the exact solutions, while the dots stand for the corresponding GRP
solutions.
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Fig. 6.2. Numerical results for a very strong nearly stationary shock: 100 grid points are used.
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Fig. 6.3. Numerical results for the low density and energy problem: 100 grid points are used.
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(a) Sod problem. As commonly used, our first example is the shock tube problem. The gas is initially at rest
with s = 1, p = 1 for 0 6 x 6 50 and s = 8, p = 0.1 for 50 < x 6 100. Numerical results are shown at time
t = 30 in Fig. 6.1.

(b) Nearly stationary shock. Initially, (s,u,p) = (0.25, �0.3, 4/3) for 0 6 x 6 50 and (s,u,p) = (1.0, �1.3,
10�6) for 50 < x 6 100. The polytropic index is taken to be c = 5/3. The result is shown in Fig. 6.2.

(c) Low density and internal energy Riemann problem. The initial data is given with (q,u,p) = (1, �2, 0.4)
for 0 6 x 6 50 and (q,u,p) = (1, 2,0.4) for 50 < x 6 100. The solid lines are obtained with the exact Riemann
solvers in [4]. The dotted lines are obtained with 100 points. By this example we show that the GRP scheme
can calculate low density problems and preserve the positivity of the density, pressure and energy to some
extent although we cannot prove this property rigorously (Fig. 6.3).
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Table 2
Useful coefficient for the GRP scheme

Two rarefaction waves ðaL; bLÞ ¼ ðarare
L ; brare

L Þ; dL ¼ drare
L

ðaR; bRÞ ¼ ðarare
R ; brare

R Þ; dR ¼ drare
R

Two shocks ðaL; bLÞ ¼ ðashock
L ; bshock

L Þ; dL ¼ dshock
L

ðaR; bRÞ ¼ ðashock
R ; bshock

R Þ; dR ¼ dshock
R

1-shock and 3-rarefaction wave ðaL; bLÞ ¼ ðashock
L ; bshock

L Þ; dL ¼ dshock
L

ðaR; bRÞ ¼ ðarare
R ; brare

R Þ; dR ¼ drare
R

1-rarefaction wave and 3-shock ðaL; bLÞ ¼ ðarare
L ; brare

L Þ; dL ¼ drare
L

ðaR; bRÞ ¼ ðashock
R ; bshock

R Þ; dR ¼ dshock
R
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Appendix A. Useful coefficients for the GRP scheme

In Table 2, we collect for all cases the coefficients in Theorem 5.1 for the polytropic gases. The 1-shock
(resp. 3-shock) refers to as the shock associated with the C� family (resp. C+-family). Analogously for the
1-rarefaction wave and the 3-rarefaction wave.

The coefficients for rarefaction waves are given by
arare
L ; brare

L


 �
¼ 1;

s1�

c1�

� �
; arare

R ; brare
R


 �
¼ 1;� s2�

c2�

� �
; ðA:1Þ

drare
L ¼ 1þ l2

1þ 2l2

c1�

cL

� �1=ð2l2Þ

þ l2

1þ 2l2

c1�

cL

� �ð1þl2Þ=l2
" #

T LS0L=sL �
c1�

cL

� �1=ð2l2Þ

cLw0L=sL; ðA:2Þ

drare
R ¼ 1þ l2

1þ 2l2

c2�

cR

� �1=ð2l2Þ

þ l2

1þ 2l2

c2�

cR

� �ð1þl2Þ=l2
" #

T RS0R=sR þ
c2�

cR

� �1=ð2l2Þ

cR/0R=sR: ðA:3Þ
The coefficients for shock waves are given by
ashock
L ¼ 1� U1ðp�; pL; sLÞrL; bshock

L ¼ U1ðp�; pL; sLÞ � rL

s2
1�

c2
1�
; ðA:4Þ

dshock
L ¼ LL

p � p0L þ LL
u � u0L þ LL

s � s0L; ðA:5Þ

ashock
R ¼ 1þ U1ðp�; pR; sRÞrR; bshock

R ¼ �U1ðp�; pR; sRÞ � rR

s2
2�

c2
2�
; ðA:6Þ

dshock
R ¼ LR

p � p0R þ LR
u � u0R þ LR

s � s0R; ðA:7Þ
where all quantities involved are
LL
p ¼ �rLU2ðp�; pL; sLÞ � 1; LL

u ¼ rL � U3ðp�; pL; sLÞ þ
c2

L

s2
L

U2ðp�; pL; sLÞ; ðA:8Þ

LL
s ¼ �rLU3ðp�; pL; sLÞ; rL ¼ �

u� � uL

s1� � sL

; ðA:9Þ

LR
p ¼ rRU2ðp�; pR; sRÞ � 1; LR

u ¼ rR þ U3ðp�; pR; sRÞ �
c2

R

s2
R

U2ðp�; pR; sRÞ; ðA:10Þ

LR
s ¼ rRU3ðp�; pR; sRÞ; rR ¼ �

u� � uR

s2� � sR

ðA:11Þ
and (denote ðp; sÞ ¼ ðpL; sLÞ or ðp; sÞ ¼ ðpR; sRÞ),
U1ðp�; p; sÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þs
p� þ l2p

s
� p� þ ð1þ 2l2Þp

p� þ l2p
;

U2ðp�; p; sÞ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þs
p� þ l2p

s
� ð2þ l2Þp� þ l2p

p� þ l2p
;

U3ðp�; p; sÞ ¼ p� � p
2s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� l2Þs
p� þ l2p

s
:

ðA:12Þ
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